A simplified methodology to produce Monte Carlo dose distributions in proton therapy

نویسندگان

  • Chris Beltran
  • Yingcui Jia
  • Roelf Slopsema
  • Daniel Yeung
  • Zuofeng Li
چکیده

The purpose of this study was to develop a simplified methodology that will produce Monte Carlo (MC) dose distribution for proton therapy which can be used as a clinical aid in determining the adequacy of proton plans produced from the treatment planning system (TPS). The Geant4 Monte Carlo toolkit was used for all simulations. The geometry of the double scatter nozzle in the simulation was a simplification of the treatment nozzle. The proton source was modeled as discrete energy layers, each with a unique energy distribution and weighting factor. The simplified MC system was designed to give the same dose distribution as the measured data used to commission the TPS. After the simplified MC system was finalized, a series of verification comparisons were made between it, measurements, and the clinically used TPS. Comparisons included the lateral profile of a stair-shaped compensator that simulated a sharp lateral heterogeneity and depth-dose measurements through heterogeneous materials. The simplified MC system matched measurements to within 2% or 2 mm for all commissioning data under investigation; moreover, the distal edge and lateral penumbra was within 1 mm of the measurements. The simplified MC system was able to better reproduce the measured profiles for a stair-shaped compensator than the TPS. Both MC and TPS matched the measured depth dose through heterogeneous materials to within 2% or 2 mm. The simplified MC system was straightforward to implement, and produced accurate results when compared to measurements. Therefore, it holds promise as a clinically useful methodology to validate the relative dose distribution of patient treatment plans produced by the treatment planning systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of arrived dose to the heart in the treatment of breast cancer in different modes of proton radiation by proton therapy using Monte Carlo simulation

Introdution: Today, the Advantages of radiation therapy by charged particles is indicated for the treatment of cancerous. During the passing of proton beam in the body tissues, secondary particles produce, which penetrate to the body healthy tissues and cause damage. The aim of this research was calculating the Spread out Bragg Peak for covering the breast cancer and investigating arrived dose ...

متن کامل

Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...

متن کامل

Dose Assessment of Eye and Its Components in Proton Therapy by Monte Carlo Method

Introduction Proton therapy is used to treat malignant tumors such as melanoma inside the eye. Proton particles are adjusted according to various parameters such as tumor size and position and patient’s distance from the proton source. The purpose of this study was to assess absorbed doses in eyes and various tumors found in the area of sclera and choroid and the adjacent tissues in radiotherap...

متن کامل

Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code

Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...

متن کامل

Evaluation of the effective dose during PBFT for brain cancer: A Monte Carlo Study

Introduction: Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed. Three alpha particles with an average energy around 4MeV are emitted from the point of reaction between a proton and boron. In addition, the 719 keV prompt gamma emitted by the proton Boron fusion reactions can be used for on-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014